Ohio charters under scrutiny still owe $6M in misspent tax dollars

  • A total of 40 Ohio charters have been found to have “misspent” a total of $6 million dollars from taxpayers, a new series of audits from 2008-14 now shows.
  • “A majority of the unresolved findings for recovery are against individuals who operated or worked at the schools, and many of these schools are now closed,” the report says, with one former school treasurer in particular blamed for “misspending” $2.1 million — $500,000 of which he personally embezzled, according to the Columbus Dispatch.
  • The findings were undertaken in an attempt to satisfy a request from the U.S. Department of Education, which previously granted $71 million dollars to the state but has now placed stricter guidelines on how and when the award can be used.
  • Right now, it’s unclear what impact the new findings might have on the $71 million dollar federal grant that was previously awarded to the state. Previously, the state admitted to lax oversight of its charter schools, and the state’s school choice director was forced to resign after a high-profile grade-scrubbing scandal. Yet the soap opera didn’t stop there. As investigations into alleged fraud began, the Ohio state auditor decided against investigating charter data omissions in order to focus on misspending allegations instead.

    The federal government’s review of Ohio’s original application for the $71 million dollar grant, which was written by the charter leader who resigned, is ongoing. Two federal bills have also been proposed in order to improve oversight for charters.

Bill Phillis, former deputy Commissioner of Education in Ohio, runs the Equity and Adequacy Coalition.

Highway robbery is legal in the Ohio charter industry

The charter industry has been largely deregulated from the beginning. The charter promoters and operators have had unrestrained freedom to use public money recklessly and dumb down educational opportunities for children. This industry is not a part of the common school system but it is a bloated parasite extracting valuable resources from the public system.

It is legal or not illegal in Ohio‘s charter industry:

For a for-profit charter school company to hold title to real estate, furniture, equipment and other tangible assets that were purchased with public money
For a charter school board to pay a company allied with their for-profit management company $700,000 per year rent to house 150 students
For a charter school of 600 students to pay $185,000 in year for marketing and promotion

For an online charter school operator to siphon off funds set aside to educate students to operate other private companies that personally benefit the charter operator

For a charter operation to help subsidize a worldwide religious movement

For charter school board members to serve without being a citizen of the United States

For non-profit charter sponsors and charter school boards to pay outrageously high salaries and benefits that would not be tolerated in the public common school system

For a person with no training or experience in education to operate a charter school

For the presence of nepotism and contractual relationships that would not be tolerated in the public common school system

For a charter operator to buy legislation via obscene levels of political contributions

For charters to spend unlimited amounts of funds on marketing and promotion

For charter operators to operate in the dark and be shielded from public exposure regarding illegal activities
The list goes on and on…

Children in public school districts are being robbed of educational opportunities by the transfer of more than $7 billion from districts to the failed charter industry over the past 15 years; yet, state officials allow this fraud on the public to go on and on and on.

Under pressure from the public, the 131st General Assembly passed legislation that will rein in some of the abuse now authorized by law. But big money from the charter industry, ineptitude of the Ohio Department of Education and the $71 million federal grant to expand charters will work together to fatten this failed industry.

The only hope is for the public common school community and advocates to band together to demand the end of this debacle that has utterly failed.

William Phillis
Ohio E & A

The Neuroscience Of Learning: 41 Terms Every Teacher Should Know

 

 

 

 

 

 

 

 

 

 

As education continues to evolve, adding in new trends, technologies, standards, and 21st century thinking habits, there is one constant that doesn’t change.

The human brain.

But neuroscience isn’t exactly accessible to most educators, rarely published, and when it is, it’s often full of odd phrasing and intimidating jargon. Worse, there seems to be a disconnect between the dry science of neurology, and the need teachers have for relevant tools, resources, and strategies in the classroom. In regards to the disconnect, we’ll continue to strive to create content that is both expert and accessible, as The Simple Things I Do To Promote Brain-Based Learning In My Classroom

As for the jargon, Judy Willis, teacher, neuroscientist, and consultant has put together an A-Z glossary of relevant neuroscience terms for teachers and administrators to help clarify the jargon. Willis’ writing has been published on edutopia, TeachThought, and Psychology Today, among other sites, and her work in this field has been especially relevant at a time of such great change in education.

The best approach with a list like this is to bookmark and share the page, and comeback to it intermittently. We’ll also add it as its own page later this week.

Baby steps.

41 Neuroscience Terms Every Teacher Should Know

Affective filter

The affective filter an emotional state of stress in children during which they are not responsive to processing, learning, and storing new information. This affective (emotional) filter is in the amygdala, which becomes hyperactive during periods of high stress. In this hyperstimulated state, new information does not pass through the amygdala to reach the higher thinking centers of the brain.

Amygdala

Part of the limbic system in the temporal lobe. The amygdala was first believed to function as a brain center for responding only to anxiety and fear. When the amygdala senses a threat, it becomes overactivated (high metabolic activity as seen by greatly increased radioactive glucose and oxygen use in the amygdala region on PET and fMRI scans). These neuroimaging findings show that when children feel helpless and anxious. When the amygdala is in a state of stress, fear, or anxiety-induced overactivation, new information coming through the sensory intake areas of the brain cannot pass through the amygdala’s affective filter to gain access to the memory circuits.

Axon

This is the tiny fibrous extension of the neuron away from the cell body to other target cells (neurons, muscles, glands).

Brain mapping

Using electrographic (EEG) response over time, brain mapping measures electrical activity representing brain activation along neural pathways. This technique allows scientists to track which parts of the brain are active when a person is processing information at various stages of information intake, patterning, storing, and retrieval. The levels of activation in particular brain regions are associated with the intensity of information processing.

Central Nervous System

This is the portion of the nervous system comprised of the spinal cord and brain.

Cerebellum

This is a large cauliflower-looking structure on the top of the brainstem. This structure is very important in motor movement and motor-vestibular memory and learning.

Cerebral Cortex

This is the outer most layer of the cerebral hemispheres of the brain. The cortex mediates all conscious activity including planning, problem solving, language, and speech. It is also involved in perception and voluntary motor activity.

Cognition

This refers to the mental process by which we become aware of the world and use that information to problem solve and make sense out of the world. It is somewhat oversimplified but cognition refers to thinking and all of the mental processes related to thinking.

Dendrites

Branched protoplasmic extensions that sprout from the arms (axons) or the cell bodies of neurons. Dendrites conduct electrical impulses toward the neighboring neurons. A single nerve may possess many dendrites. Dendrites increase in size and number in response to learned skills, experience, and information storage. New dendrites grow as branches from frequently activated neurons. Proteins called “neurotrophins,” such as nerve growth factor, stimulate this dendrite growth.

Dopamine

A neurotransmitter most associated with attention, decision making, executive function, and reward-stimulated learning. Dopamine release on neuroimaging has been found to increase in response to rewards and positive experiences. Scans reveal greater dopamine release while subjects are playing, laughing, exercising, and receiving acknowledgment (e.g., praise) for achievement.

Executive Functions

Cognitive processing of information that takes place in areas in the prefrontal cortex that exercise conscious control over one’s emotions and thoughts. This control allows for patterned information to be used for organizing, analyzing, sorting, connecting, planning, prioritizing, sequencing, self-monitoring, self-correcting, assessment, abstractions, problem solving, attention focusing, and linking information to appropriate actions.

Functional Brain Imaging (neuroimaging)

The use of techniques such as PET scans and fMRI imaging to demonstrate the structure, function, or biochemical status of the brain. Structural imaging reveals the overall structure of the brain, and functional neuroimaging provides visualization of the processing of sensory information coming to the brain and of commands going from the brain to the body. This processing is visualized directly as areas of the brain that are “lit up” by increased metabolism, blood flow, oxygen use, or glucose uptake. Functional brain imaging reveals neural activity in particular brain regions and networks of connecting brain cells as the brain performs discrete cognitive tasks.

Functional Magnetic Resonance Imaging (fMRI)

This type of functional brain imaging uses the paramagnetic properties of oxygen-carrying hemoglobin in the blood to demonstrate which brain structures are activated and to what degree during various performance and cognitive activities. During most fMRI learning research, subjects are scanned while they are exposed to visual, auditory, or tactile stimuli; the scans then reveal the brain structures that are activated by these experiences.

Glia

These are specialized cells that nourish, support, and complement the activity of neurons in the brain. Astrocytes are the most common and appear to play a key role in regulating the amount of neurotransmitter in the synapse by taking up excess neurotransmitter.

Graphic Organizers

Diagrams that are designed to coincide with the brain’s style of patterning. In order for sensory information to be encoded (the initial processing of the information entering from the senses), consolidated, and stored, the information must be patterned into a brain-compatible form. Graphic organizers can promote this patterning in the brain when children participate in creating relevant connections to their existing memory circuitry.

Gray Matter

The gray refers to the brownish-gray color of the nerve cell bodies (neurons) of the outer cortex of the brain as compared with white matter, which is primarily composed of supportive cells and connecting tracks. Neurons are darker than other brain matter, so the cortex or outer layer of the brain appears darker gray and is called “gray matter” because neurons are most dense in that layer.

Hippocampus

A ridge in the floor of each lateral ventricle of the brain that consists mainly of gray matter that has a major role in memory processes. The hippocampus takes sensory inputs and integrates them with relational or associational patterns from preexisting memories, thereby binding the information from the new sensory input into storable patterns of relational memories.

Limbic System

This is a group of functionally and developmentally linked structures in the brain (including the amygdala, cingulate cortex, hippocampus, septum and basal ganglia). The limbic system is involved in regulation of emotion, memory, and processing complex socio-emotional communication.

Long-Term Memory

Long-term memory is created when short-term memory is strengthened through review and meaningful association with existing patterns and prior knowledge. This strengthening results in a physical change in the structure of neuronal circuits.

Metacognition

Knowledge about one’s own information processing and strategies that influence one’s learning that can optimize future learning. After a lesson or assessment, when children are prompted to recognize the successful learning strategies they used, that reflection can reinforce the effective strategies.

Myelin

The fatty substance that covers and protects nerves. Myelin is a layered tissue that sheathes the axons (nerve fibers). This sheath around the axon acts like a conductor in an electrical system, ensuring that messages sent by axons are not lost as they travel to the next neuron. Myelin increases the efficiency of nerve impulse travel and grows in layers in response to more stimulation of a neural pathway.

Myelination

The formation of the myelin sheath around a nerve fiber.

Neuronal Circuits

Neurons communicate with each other by sending coded messages along electrochemical connections. When there is repeated stimulation of specific patterns of stimulation between the same groups of neurons, their connecting circuits (dendrites) become more developed and more accessible to efficient stimulation and response. This is where practice (repeated stimulation of grouped neuronal connections in neuronal circuits) results in more successful recall.

Neurons

Specialized cells in the brain and throughout the nervous system that control storage and processing of information to, from, and within the brain, spinal cord, and nerves. Neurons are composed of a main cell body, a single major axon for outgoing electrical signals, and a varying number of dendrites to conduct coded information throughout the nervous system.

Neuroplasticity

This refers to the remarkable capacity of the brain to change its molecular, microarchitectural, and functional organization in response to injury or experience. Dendrite formation and dendrite and neuron destruction (pruning) allows the brain to reshape and reorganize the networks of connections in response to increased or decreased use of these pathways.

Neurotransmitters

Brain proteins that are released by the electrical impulses on one side of the synapse (axonal terminal) and then float across the synaptic gap carrying the information with them to stimulate the nerve ending (dendrite) of the next cell in the pathway. Once the neurotransmitter is taken up by the dendrite nerve ending, the electric impulse is reactivated in that dendrite to travel along to the next nerve. Neurotransmitters in the brain include serotonin, tryptophan, acetylcholine, dopamine, and others that transport information across synapses and also circulate through the brain, much like hormones, to influence larger regions of the brain. When neurotransmitters are depleted, by too much information traveling through a nerve circuit without a break, the speed of transmission along the nerve slows down to a less efficient level.

Numeracy

The ability to reason with numbers and other mathematical concepts. Children’s concepts of number and quantity develop with brain maturation and experience.

Occipital Lobes (visual memory areas)

These posterior lobes of the brain process optical input among other functions.

Oligodendrocytes

Oligodendrocytes are the glia that specialize to form the myelin sheath around many axonal projections.

Parietal lobes

Parietal lobes on each side of the brain process sensory data, among other functions.

Patterning

Patterning is the process whereby the brain perceives sensory data and generates patterns by relating new information with previously learned material or chunking material into pattern systems it has used before. Education is about increasing the patterns children can use, recognize, and communicate. As the ability to see and work with patterns expands, the executive functions are enhanced. Whenever new material is presented in such a way that children see relationships, they can generate greater brain cell activity (formation of new neural connections) and achieve more successful patterns for long-term memory storage and retrieval.

Positron Emission Tomography (PET scans)

Radioactive isotopes are injected into the blood attached to molecules of glucose. As a part of the brain is more active, its glucose and oxygen demands increase. The isotopes attached to the glucose give off measurable emissions used to produce maps of areas of brain activity. The higher the radioactivity count, the greater the activity taking place in that portion of the brain. PET scanning can show blood flow, oxygen, and glucose metabolism in the tissues of the working brain that reflect the amount of brain activity in these regions while the brain is processing sensory input (information). The biggest drawback of PET scanning is that because the radioactivity decays rapidly, it is limited to monitoring short tasks. fMRI technology does not have this same time limitation and has become the preferred functional imaging technique in learning research.

Prediction

Prediction is what the brain does with the information it patterns. Prediction occurs when the brain has enough information in a patterned memory category that it can find similar patterns in new information and predict what the patterns mean. For example if you see the number sequence 3,6,9,12…,.. you predict the next number will be 15 because you recognize the pattern of counting by threes. Through careful observation the brain learns more and more about our world and is able to make more and more accurate predictions about what will come next. Prediction is often what is measured in intelligence tests. This predicting ability is the basis for successful reading, calculating, test taking, goal- setting, and appropriate social interactions behavior. Successful prediction is one of the best problem-solving strategies the brain has.

Prefrontal Cortex (front, outer parts of the frontal lobes)

The prefrontal cortex (PFC) is a hub of neural networks with intake and output to almost all other regions of the brain. In the PFC relational, working-memories can be mentally manipulated to become long-term memory and emotions can be consciously evaluated. Executive functions directed by PFC networks respond to input through the highest levels of cognition. These functions include information evaluation, prediction, conscious decision making, emotional awareness and response, organizing, analyzing, sorting, connecting, planning, prioritizing, sequencing, self-monitoring, self-correcting, assessment, abstraction, deduction, induction, problem solving, attention focusing, and linking information to planning and directing actions.

Pruning: Neurons and their connections are pruned (destroyed) when they are not used. In a baby, the brain overproduces brain cells (neurons) and connections between brain cells (synapses) and then starts pruning them back around the age of three. The second wave of synapse formation occurs just before puberty and is followed by another phase of pruning. Pruning allows the brain to consolidate learning by pruning away unused neurons and synapses and wrapping more white matter (myelin) around the neuronal networks more frequently used to stabilize and strengthen their ability to conduct the electrical impulses of nerve- to-nerve communication.

RAD learning

There three main brain systems that are keys to building better brains. The three systems can be referred to as RAD, which is short for Reach and Discover.

Reticular Activating System (RAS)

This lower part of the posterior brain filters all incoming stimuli and makes the “decision” as to what sensory input is attended to or ignored. The main categories that focus the attention of the RAS include novelty (changes in the environment), surprise, danger, and movement.

Rote Memory

This type of memorization is the most commonly required memory task for children in school. This type of learning involves “memorizing,” and soon forgetting, facts that are often of little primary interest or emotional value to the child, such as lists of words. Facts that are memorized by rehearsing them over and over, that don’t have obvious or engaging patterns or connections, are rote memories. Without giving the information context or relationship to children’s lives, these facts are stored in remoter areas of the brain. These isolated bits are more difficult to locate and retrieve because there are fewer nerve pathways leading to these remote storage systems.

Serotonin

A neurotransmitter used to carry messages between neurons. Too little serotonin may be a cause of depression and inattention. Dendritic branching is enhanced by the serotonin secreted by the brain predominantly between the sixth and eighth hour of sleep (non-REM).

Short-Term Memory (working memory)

This memory can hold and manipulate information for use in the immediate future. Information is only held in working memory for about a minute. The working memory span of the mature brain (less in children) is approximately 7-9 chunks of data

Synapse

These gaps between nerve endings are where neurotransmitters like dopamine carry information across the space separating the axon extensions of one neuron from the dendrite that leads to the next neuron in the pathway. Before and after crossing the synapse as a chemical message, information is carried in an electrical state when it travels down the nerve.

Venn diagram

A type of graphic organizer used to compare and contrast information. The overlapping areas represent similarities, and the nonoverlapping areas represent differences.

Collaborative Overload

Great article posted by Rob Cross, Reb Rebele and Adam Grant

 

EXPLORE THE ARCHIVE
Collaboration is taking over the workplace. As business becomes increasingly global and cross-functional, silos are breaking down, connectivity is increasing, and teamwork is seen as a key to organizational success. According to data we have collected over the past two decades, the time spent by managers and employees in collaborative activities has ballooned by 50% or more.

Certainly, we find much to applaud in these developments. However, when consumption of a valuable resource spikes that dramatically, it should also give us pause. Consider a typical week in your own organization. How much time do people spend in meetings, on the phone, and responding to e-mails? At many companies the proportion hovers around 80%, leaving employees little time for all the critical work they must complete on their own. Performance suffers as they are buried under an avalanche of requests for input or advice, access to resources, or attendance at a meeting. They take assignments home, and soon, according to a large body of evidence on stress, burnout and turnover become real risks.

What’s more, research we’ve done across more than 300 organizations shows that the distribution of collaborative work is often extremely lopsided. In most cases, 20% to 35% of value-added collaborations come from only 3% to 5% of employees. As people become known for being both capable and willing to help, they are drawn into projects and roles of growing importance. Their giving mindset and desire to help others quickly enhances their performance and reputation. As a recent study led by Ning Li, of the University of Iowa, shows, a single “extra miler”—an employee who frequently contributes beyond the scope of his or her role—can drive team performance more than all the other members combined.
But this “escalating citizenship,” as the University of Oklahoma professor Mark Bolino calls it, only further fuels the demands placed on top collaborators. We find that what starts as a virtuous cycle soon turns vicious. Soon helpful employees become institutional bottlenecks: Work doesn’t progress until they’ve weighed in. Worse, they are so overtaxed that they’re no longer personally effective. And more often than not, the volume and diversity of work they do to benefit others goes unnoticed, because the requests are coming from other units, varied offices, or even multiple companies. In fact, when we use network analysis to identify the strongest collaborators in organizations, leaders are typically surprised by at least half the names on their lists. In our quest to reap the rewards of collaboration, we have inadvertently created open markets for it without recognizing the costs. What can leaders do to manage these demands more effectively?

Precious Personal Resources
First, it’s important to distinguish among the three types of “collaborative resources” that individual employees invest in others to create value: informational, social, and personal. Informational resources are knowledge and skills—expertise that can be recorded and passed on. Social resources involve one’s awareness, access, and position in a network, which can be used to help colleagues better collaborate with one another. Personal resources include one’s own time and energy.

These three resource types are not equally efficient. Informational and social resources can be shared—often in a single exchange—without depleting the collaborator’s supply. That is, when I offer you knowledge or network awareness, I also retain it for my own use. But an individual employee’s time and energy are finite, so each request to participate in or approve decisions for a project leaves less available for that person’s own work.

Up to a third of value-added collaborations come from only 3% to 5% of employees.

Unfortunately, personal resources are often the default demand when people want to collaborate. Instead of asking for specific informational or social resources—or better yet, searching in existing repositories such as reports or knowledge libraries—people ask for hands-on assistance they may not even need. An exchange that might have taken five minutes or less turns into a 30-minute calendar invite that strains personal resources on both sides of the request.

Consider a case study from a blue-chip professional services firm. When we helped the organization map the demands facing a group of its key employees, we found that the top collaborator—let’s call him Vernell—had 95 connections based on incoming requests. But only 18% of the requesters said they needed more personal access to him to achieve their business goals; the rest were content with the informational and social resources he was providing. The second most connected person was Sharon, with 89 people in her network, but her situation was markedly different, and more dangerous, because 40% of them wanted more time with her—a significantly greater draw on her personal resources.

We find that as the percentage of requesters seeking more access moves beyond about 25, it hinders the performance of both the individual and the group and becomes a strong predictor of voluntary turnover. As well-regarded collaborators are overloaded with demands, they may find that no good deed goes unpunished.
The exhibit “In Demand, Yet Disengaged,” reflecting data on business unit line leaders across a sample of 20 organizations, illustrates the problem. People at the top center and right of the chart—that is, those seen as the best sources of information and in highest demand as collaborators in their companies—have the lowest engagement and career satisfaction scores, as represented by the size of their bubbles. Our research shows that this ultimately results in their either leaving their organizations (taking valuable knowledge and network resources with them) or staying and spreading their growing apathy to their colleagues.

Leaders can solve this problem in two ways: by streamlining and redistributing responsibilities for collaboration and by rewarding effective contributions.

Redistributing the Work
Any effort to increase your organization’s collaborative efficiency should start with an understanding of the existing supply and demand. Employee surveys, electronic communications tracking, and internal systems such as 360-degree feedback and CRM programs can provide valuable data on the volume, type, origin, and destination of requests, as can more in-depth network analyses and tools. For example, Do.com monitors calendars and provides daily and weekly reports to both individual employees and managers about time spent in meetings versus on solo work. The idea is to identify the people most at risk for collaborative overload. Once that’s been done, you can focus on three levers:

Encourage behavioral change.
Show the most active and overburdened helpers how to filter and prioritize requests; give them permission to say no (or to allocate only half the time requested); and encourage them to make an introduction to someone else when the request doesn’t draw on their own unique contributions. The latest version of the team-collaboration software Basecamp now offers a notification “snooze button” that encourages employees to set stronger boundaries around their incoming information flow. It’s also worth suggesting that when they do invest personal resources, it be in value-added activities that they find energizing rather than exhausting. In studying employees at one Fortune 500 technology company, we found that although 60% wanted to spend less time responding to ad hoc collaboration requests, 40% wanted to spend more time training, coaching, and mentoring. After their contributions were shifted to those activities, employees were less prone to stress and disengagement.

To stem the tide of incoming requests, help seekers, too, must change their behavior. Resetting norms regarding when and how to initiate e-mail requests or meeting invitations can free up a great deal of wasted time. As a step in this direction, managers at Dropbox eliminated all recurring meetings for a two-week period. That forced employees to reassess the necessity of those gatherings and, after the hiatus, helped them become more vigilant about their calendars and making sure each meeting had an owner and an agenda. Rebecca Hinds and Bob Sutton, of Stanford, found that although the company tripled the number of employees at its headquarters over the next two years, its meetings were shorter and more productive.

In addition, requests for time-sapping reviews and approvals can be reduced in many risk-averse cultures by encouraging people to take courageous action on decisions they should be making themselves, rather than constantly checking with leaders or stakeholders.

Leverage technology and physical space to make informational and social resources more accessible and transparent.
Relevant technical tools include Slack and Salesforce.com’s Chatter, with their open discussion threads on various work topics; and Syndio and VoloMetrix (recently acquired by Microsoft), which help individuals assess networks and make informed decisions about collaborative activities. Also rethink desk or office placement. A study led by the Boston University assistant professor Stine Grodal documented the detrimental effects of team meetings and e-mails on the development and maintenance of productive helping relationships. When possible, managers should colocate highly interdependent employees to facilitate brief and impromptu face-to-face collaborations, resulting in a more efficient exchange of resources.

Consider structural changes.
Can you shift decision rights to more-appropriate people in the network? It may seem obvious that support staff or lower-level managers should be authorized to approve small capital expenditures, travel, and some HR activities, but in many organizations they aren’t. Also consider whether you can create a buffer against demands for collaboration. Many hospitals now assign each unit or floor a nurse preceptor, who has no patient care responsibilities and is therefore available to respond to requests as they emerge. The result, according to research that one of us (Adam Grant) conducted with David Hofmann and Zhike Lei, is fewer bottlenecks and quicker connections between nurses and the right experts. Other types of organizations might also benefit from designating “utility players”—which could lessen demand for the busiest employees—and possibly rotating the role among team members while freeing up personal resources by reducing people’s workloads.

Rewarding Effective Collaboration
We typically see an overlap of only about 50% between the top collaborative contributors in an organization and those employees deemed to be the top performers. As we’ve explained, many helpers underperform because they’re overwhelmed; that’s why managers should aim to redistribute work. But we also find that roughly 20% of organizational “stars” don’t help; they hit their numbers (and earn kudos for it) but don’t amplify the success of their colleagues. In these cases, as the former Goldman Sachs and GE chief learning officer Steve Kerr once wrote, leaders are hoping for A (collaboration) while rewarding B (individual achievement). They must instead learn how to spot and reward people who do both.

Why Women Bear More of the Burden
The lion’s share of collaborative work tends to fall on women. They’re stereotyped as communal and caring, so they’re expected to help others with heavy workloads, provide mentoring and training to more-junior colleagues, recruit new hires, and attend optional meetings. As a result, the evidence shows, women experience greater emotional exhaustion than men.

One important solution to this problem is to encourage women to invest different types of resources in collaboration. In a 2013 Huffington Post poll of Americans, men and women estimated how often they contribute to others in a variety of ways. Men were 36% more likely to share knowledge and expertise—an informational resource. Meanwhile, women were 66% more likely to assist others in need—an action that typically costs more time and energy. By making contributions that rely less on personal resources, women can protect themselves against collaboration overload.

Managers must also ensure that men and women get equal credit for collaboration. In an experiment led by the NYU psychologist Madeline Heilman, a man who stayed late to help colleagues earned 14% higher ratings than a woman who did the same. When neither helped, the woman was rated 12% lower than the man. By improving systems for measuring, recognizing, and rewarding collaborative contributions, leaders can shift the focus away from the gender of the employee and toward the value added.

Consider professional basketball, hockey, and soccer teams. They don’t just measure goals; they also track assists. Organizations should do the same, using tools such as network analysis, peer recognition programs, and value-added performance metrics. We helped one life sciences company use these tools to assess its workforce during a multibillion-dollar acquisition. Because the deal involved consolidating facilities around the world and relocating many employees, management was worried about losing talent. A well-known consultancy had recommended retention bonuses for leaders. But this approach failed to consider those very influential employees deep in the acquired company who had broad impact but no formal authority. Network analytics allowed the company to pinpoint those people and distribute bonuses more fairly.

Efficient sharing of informational, social, and personal resources should also be a prerequisite for positive reviews, promotions, and pay raises. At one investment bank, employees’ annual performance reviews include feedback from a diverse group of colleagues, and only those people who are rated as strong collaborators (that is, able to cross-sell and provide unique customer value to transactions) are considered for the best promotions, bonuses, and retention plans. Corning, the glass and ceramics manufacturer, uses similar metrics to decide which of its scientists and engineers will be named fellows—a high honor that guarantees a job and a lab for life. One criterion is to be the first author on a patent that generates at least $100 million in revenue. But another is whether the candidate has worked as a supporting author on colleagues’ patents. Corning grants status and power to those who strike a healthy balance between individual accomplishment and collaborative contribution. (Disclosure: Adam Grant has done consulting work for Corning.)

Collaboration is indeed the answer to many of today’s most pressing business challenges. But more isn’t always better. Leaders must learn to recognize, promote, and efficiently distribute the right kinds of collaborative work, or their teams and top talent will bear the costs of too much demand for too little supply. In fact, we believe that the time may have come for organizations to hire chief collaboration officers. By creating a senior executive position dedicated to collaboration, leaders can send a clear signal about the importance of managing teamwork thoughtfully and provide the resources necessary to do it effectively. That might reduce the odds that the whole becomes far less than the sum of its parts.

A version of this article appeared in the January–February 2016 issue (pp.74–79) of Harvard Business Review.

Rob Cross is a professor of management at the University of Virginia’s McIntire School of Commerce and a coauthor of The Hidden Power of Social Networks.

How to Score a Meeting with Almost Anyone

Since it’s Thursday, I want to take another look back at a throwback: one of my favorite stories about how it is possible to score a meeting with almost anyone. 

supersuper

When these guys come knocking, who wouldn’t answer the door?

Have you ever been desperate to land a meeting with someone – a potential client, investor, mentor, et al. – but just couldn’t get on their radar?

You want nothing more than a few minutes of time with them. You try everything: persistent calls, emails, tweets, carrier pigeon. But nothing works.

I like to think of myself as a fairly successful entrepreneur, but this used to happen to me all the time. Then I discovered a way to reach almost anyone.

A couple of years ago, I was trying to score a meeting with a grand poobah at a bank in Midtown Manhattan. I can’t tell you this gentleman’s name, but trust me, it’s a big name.

Nothing worked. Not the calls. Not the smoke signals. Not even the singing telegram on his birthday. (Okay, I didn’t send him one of those, but I did some similarly desperate things.)

Then I had an idea. Since he’s a New Yorker, I wondered if Mr. Big didn’t idolize a New York Yankees baseball player or two.

I called Mr. Big’s secretary and before she could pass me to his voicemail for the umpteenth time, I said, “No, I need to speak to you.” I asked her if Mr. Big was a Yankees fan and learned he was a huge admirer of Yankees reliever Mariano Rivera. With that news, the heavens parted, the angels started singing and I saw the light.

I immediately had my trusty assistant send Mr. Big a small plastic cube — an empty baseball case — with a note attached.

“I heard you love Mariano Rivera,” it read. “Here’s a case for a Mariano-signed baseball. When you and I meet within the next two weeks, I’ll bring you the ball.”

Wouldn’t you know it? Big called me that day. And we met the next week.

Maybe you’re thinking: “That’s a cute story, Brandon. But what if the person I need to reach doesn’t like the Yankees or even sports? And what if I don’t have any special connections?”

You’re still in luck. The philosopher Joseph Campbell showed us that there’s a bond connecting human beings that’s even stronger than those of death and taxes: hero worship.

Every culture, throughout history, has told its own hero stories — whether they take the form of religion, myth, or, in our society, pop culture. Be it an athlete, actor or singer, every American has a hero. I guarantee you that the big fish you can’t reel in has a hero or two of their own.

Sometimes this hero is relatively easy to identify. For instance, a quick look at Barack Obama’s Facebook page shows that the president loves Bob Dylan. So, if I wanted to land a meeting with him, maybe I’d send him an empty Blood on the Tracks record case, with a note saying I had an original vinyl copy I’d like to give him in person. (Obviously that’s an outlandish hypothetical, but you get the point.)

3880045326_8c5c8ec071

Are you there Barack? It’s me, Bob.

Sometimes the hero will be more difficult to find. If a little internet stalking doesn’t turn anything up, do what I did: chat up the personal assistant, or someone else who might know.

Maybe you can’t afford to send a high-end totem. In that case, be creative.

For instance, say the person you’re trying to meet is a fan of the show Mad Men. You probably can’t have Jon Hamm make a phone call for you, but you can send a reasonably-priced and eye-popping photo of the actor (there are great shots available on sites like Crestock.com) with a note saying: “I work as hard as Don Draper and I’m almost always more sober.”

main-jon-hamm-v2

Who could say no to this face?

The “bait” doesn’t have to be shiny and expensive. It just has to stand out from the dozens of other requests your prospect will receive that day. 

The only necessity, really, is to abandon the business or sales angle and channel a hero’s voice instead. Of course, once you get the attention you’ve worked so hard to score, the rest is up to you.

US high school grad rate hits unprecedented 82%

  • Newly-released data from the U.S. Department of Education shows that 82% of American high school seniors graduated in 2013-14, a record-breaking high percentage.
  • The percentage has increased steadily over the past four years, with a previous high of 81% reported in February.
  • Additionally, the federal government claims that the achievement gap in graduation rates between racially disparate students is also now decreasing.

Digital Tools and the Holidays…things parents should know.

December, 2014 Here is a new visual from ISTE on the concept of digital citizenship. The visual outlines some of the features characterizing ‘good’ digital citizens based on attributes of good citizens. The elements of digital citizenship, according to ISTE, “ are not so different from the basic tenets of traditional citizenship: Be kind, respectful and responsible, and just do the right thing”….

The Year’s Best App’s

December 16, 2014 Below is a visual released a few days ago by Google in which it featured some of the most popular games, movies, music, news and books of 2014. In the education section, Duolingo topped the list. This is  a great web tool and mobile app for learning a new language. It  provides a plethora of translation activities  through which learners get to practice their new…

Game On: An Online Challenge to Gifted Students to Compete Globally

 

About 18 months ago, novice entrepreneur Sue Khim flew to San Francisco from her home in Illinois to take part in an uncommonly public version of a Silicon Valley rite of passage — the pitch. With thousands of other young techies in the audience, she was scheduled to be onstage at the Launch Festival, a showcase for “stealth” startups that have managed to keep their products out of the voracious tech press, or have as-yet-unreleased products to announce.

Launch is more competition than festival. Over two days, tech entrepreneurs pitch to a panel of hotshot technologists who issue on-the-spot critique of products’ market viability and revenue models, and, potentially offer funding.

Khim’s presentation knocked it out of the park, bagging $75,000 for Alltuition, a “TurboTax for student loans.” But within six months, the founders had turned their attention to a new endeavor, entirely fueled by their success at the Launch Festival.

Khim has gone from talking about a potential market of 21 million students to about 20 times that number. And she’s targeting children across the world as young as 11 who are the best among their peer groups at science and math.

It’s called Brilliant.org — an online hub for the world’s most promising young minds to come together, connect, and see how they measure up against one another. Launch judge and former Facebook executive Chamath Palihapitiya helped spark the idea.

“There’s a ton of people outside the U.S. that are trying to get into  U.S. schools that have no path to figure that out,” Palihapitiya told Brilliant founder Khim after her Alltuition presentation. There also seemed to be plenty of offerings for adults and remediation programs for struggling high school students in online education. But not a place to challenge A and B students.

‘Tantalizingly Tricky And Hard’

So Brilliant is designed for talented 11- to 18-year-olds who would probably be “Googling for hard math problems,” Khim said. Brilliant administers a diagnostic exam to new users, and then begins delivering “tantalizingly tricky and hard” questions written by math and physics teachers, she said.

Because Brilliant’s team assumes their users already have a strong foundation in STEM topics (science, technology, engineering and mathematics), the site focuses on measurement, Khim said. She said it considers questions like, “How can we structure practice in such a way that they will understand (a concept) by the end of the practice? And then how do we measure throughout whether they’re on track to understand it or not?”

In many ways, Brilliant mirrors real-world practice settings that high-aptitude kids have flocked to for years: the cram schools where children in India and China prepare for competitive national exams, or Math Circles in the U.S. The idea also emerged from Khim’s own background attending under-resourced schools on Chicago’s South Side.

“My family did not have a lot of money. I grew up in a housing project, and we were on food stamps,” she told me. In third grade, she said, she realized she was smarter than her teachers. Khim figures she wasn’t being stretched intellectually until her family moved and she entered a school with a gifted-and-talented program, allowing her to learn from, and compete with, other smart kids.

Global Competition

On Brilliant, students can participate in this sort of academic socializing on a global scale. The site also brings transparency to global competition. Students can share their answers, and how they devised them, with the Brilliant community — and their social networks. The data can be sifted by geography and age range. In a March demo, six months after launching the site, Khim pulled up a picture of a Filipino student who she says is doing college-level math at age 12, and a 16-year-old in Brazil who she says “probably doesn’t know that he’s in the 50th percentile globally … and that he actually has a lot of work to do.” To date, 90 percent of Brilliant’s users are outside the U.S.

Yong Zhao, associate dean for global education at the University of Oregon, said “globalization has changed a lot of people’s perspectives. Everybody wants to out-educate everyone else. Since we lack good definition of what that means, we think you have to out-score others in some predefined context.”

Zhao said he worries about how American parents might react to international comparisons. But given this rising anxiety, he said, Brilliant’s comparison engine, which allows users to assess their stats against those of peers everywhere, could help to popularize the site.

Brilliant is predicated on the failure of schools to properly stimulate talented students, but one aspect of its revenue model also could be seen as a response to the STEM skills gap, allowing recruiters to tap into a global pool of talent, for a price. A year after Alltuition won funding, Khim was back at the Launch Festival, this time presenting Brilliant. It didn’t take the panel long to make a leap beyond college recruitment. Launch Founder Jason Calcanis asked judge David Cohen, of the TechStars accelerator, to comment on the site’s potential to broker individual sponsorship, like that a Ph.D. student might enjoy.

“Imagine the idea of sort of investing in people,” said Cohen, teasing out the idea of crowdfunding an entire employment trajectory, starting with junior high. “Are the biggest companies interested in doing that? Are there investors interested in doing that?” He mused about having privileged access to the “smartest, most interesting people in the world.”

There are other education sites and initiatives that allow students to publish their results online. The juggernaut online learning site Khan Academy has a system of rewarding badges for a range of accomplishments, from simply watching videos consecutively, to correctly answering problems, and it has a built-in infrastructure for teachers and coaches to view progress. But neither has Brilliant’s focus on top students, key to its appeal for recruiters.

Khim says she’s already hearing that students are listing Brilliant on their college applications. Recruiters say there are many services that purport to increase the flow of talented students, but at some schools, like UC Berkeley, they say they’re already too busy to consider adding new tools.

Brilliant is facing a crowded marketplace amid recruitment-augmenting services. But Khim says colleges, scholarship programs, and corporations have already signaled interest in the access to top-tier talent that her site provides.

Brilliant’s user base is still modest: 120,000, but doubling every eight weeks or so.

These are the people that tomorrow will be creating the next big tech company, the next great medical breakthrough … that will be sending man to Mars,” Khim said to a crowd assembled at a recent TEDx conference in her hometown of Chicago. Her pitch has evolved, even since March. Now it references a grand theory of massively impacting the economy, and being motivated by the idea of harnessing human capital to notch up an entire country’s GDP. Khim herself is on leave from the University of Chicago to devote more time to building the site.

Meanwhile, the 12-year-old user from the Philippines whom she mentioned back in March won a math competition on Brilliant, beating a 17-year-old who got a perfect score at the International Mathematical Olympiad. Khim says he’s now being privately coached by a math professor who’s taken him on as a mentee.

Nishat Kurwa is a reporter for Turnstyle News, a tech and digital culture site from Youth Radio.

Copyright 2013 Turnstyle. To see more, visit http://turnstylenews.com/.

The Joyful, Illiterate Kindergartners of Finland

Forget the Common Core, Finland’s youngsters are in charge of determining what happens in the classroom.

“The changes to kindergarten make me sick,” a veteran teacher in Arkansas recently admitted to me. “Think about what you did in first grade—that’s what my 5-year-old babies are expected to do.”

The difference between first grade and kindergarten may not seem like much, but what I remember about my first-grade experience in the mid-90s doesn’t match the kindergarten she described in her email: three and a half hours of daily literacy instruction, an hour and a half of daily math instruction, 20 minutes of daily “physical activity time” (officially banned from being called “recess”) and two 56-question standardized tests in literacy and math—on the fourth week of school.

That American friend—who teaches 20 students without an aide—has fought to integrate 30 minutes of “station time” into the literacy block, which includes “blocks, science, magnetic letters, play dough with letter stamps to practice words, books, and storytelling.” But the most controversial area of her classroom isn’t the blocks nor the stamps: Rather, it’s the “house station with dolls and toy food”—items her district tried to remove last year. The implication was clear: There’s no time for play in kindergarten anymore.
A working paper, “Is Kindergarten the New First Grade?,” confirms what many experts have suspected for years: The American kindergarten experience has become much more academic—and at the expense of play. The late psychologist, Bruno Bettelheim, even raised the concern in an article for The Atlantic in 1987.

The American kindergarten experience has become much more academic—and at the expense of play.
Researchers at the University of Virginia, led by the education-policy researcher Daphna Bassok, analyzed survey responses from American kindergarten teachers between 1998 and 2010. “Almost every dimension that we examined,” noted Bassok, “had major shifts over this period towards a heightened focus on academics, and particularly a heightened focus on literacy, and within literacy, a focus on more advanced skills than what had been taught before.”

In the study, the percentage of kindergarten teachers who reported that they agreed (or strongly agreed) that children should learn to read in kindergarten greatly increased from 30 percent in 1998 to 80 percent in 2010.

Bassok and her colleagues found that while time spent on literacy in American kindergarten classrooms went up, time spent on arts, music, and child-selected activities (like station time) significantly dropped. Teacher-directed instruction also increased, revealing what Bassok described as “striking increases in the use of textbooks and worksheets… and very large increases in the use of assessments.”
But Finland—a Nordic nation of 5.5 million people, where I’ve lived and taught fifth and sixth graders over the last two years—appears to be on the other end of the kindergarten spectrum. Before moving to Helsinki, I had heard that most Finnish children start compulsory, government-paid kindergarten—or what Finns call “preschool”—at age 6. And not only that, but I learned through my Finnish mother-in-law—a preschool teacher—that Finland’s kindergartners spend a sizable chunk of each day playing, not filling out worksheets.

Finnish schools have received substantial media attention for years now—largely because of the consistently strong performance of its 15-year-olds on international tests like the PISA. But I haven’t seen much coverage on Finland’s youngest students.

So, a month ago, I scheduled a visit to a Finnish public kindergarten—where a typical school day is just four hours long.

* * *

Approaching the school’s playground that morning, I watched as an army of 5- and 6-year-old boys patrolled a zigzagging stream behind Niirala Preschool in the city of Kuopio, unfazed by the warm August drizzle. When I clumsily unhinged the steel gate to the school’s playground, the young children didn’t even lift their eyes from the ground; they just kept dragging and pushing their tiny shovels through the mud.

At 9:30 a.m., the boys were called to line up for a daily activity called Morning Circle. (The girls were already inside—having chosen to play boardgames indoors.) They trudged across the yard in their rubber boots, pleading with their teachers to play longer—even though they had already been outside for an hour. As they stood in file, I asked them to describe what they’d been doing on the playground.

“Making dams,” sang a chorus of three boys.

“Nothing else?” one of their teachers prodded.

“Nothing else,” they confirmed.

“[Children] learn so well through play,” Anni-Kaisa Osei Ntiamoah, one of the preschool’s “kindergarten” teachers, who’s in her seventh year in the classroom, told me. “They don’t even realize that they are learning because they’re so interested [in what they’re doing].”

“[Children] learn so well through play. They don’t even realize that they are learning because they’re so interested.”
When children play, Osei Ntiamoah continued, they’re developing their language, math, and social-interaction skills. A recent research summary “The Power of Play” supports her findings: “In the short and long term, play benefits cognitive, social, emotional, and physical development…When play is fun and child-directed, children are motivated to engage in opportunities to learn,” the researcher concluded.

Osei Ntiamoah’s colleagues all seemed to share her enthusiasm for play-based learning, as did the school’s director, Maarit Reinikka: “It’s not a natural way for a child to learn when the teacher says, ‘Take this pencil and sit still.’” The school’s kindergarten educators have their students engage in desk work—like handwriting—just one day a week. Reinikka, who directs several preschools in Kuopio, assured me that kindergartners throughout Finland—like the ones at Niirala Preschool—are rarely sitting down to complete traditional paper-and-pencil exercises.
And there’s no such thing as a typical day of kindergarten at the preschool, the teachers said. Instead of a daily itinerary, two of them showed me a weekly schedule with no more than several major activities per day: Mondays, for example, are dedicated to field trips, ballgames, and running, while Fridays—the day I visited—are for songs and stations.

Once, Morning Circle—a communal time of songs and chants—wrapped up, the children disbanded and flocked to the station of their choice: There was one involving fort-making with bed sheets, one for arts and crafts, and one where kids could run a pretend ice-cream shop. “I’ll take two scoops of pear and two scoops of strawberry—in a waffle cone,” I told the two kindergarten girls who had positioned themselves at the ice-cream table; I had a (fake) 10€ bill to spend, courtesy of one of the teachers. As one of the girls served me—using blue tack to stick laminated cutouts of scoops together—I handed the money to her classmate.

Throughout the morning I noticed that the kindergartners played in two different ways: One was spontaneous and free form, while the other was more guided and pedagogical.
With a determined expression reminiscent of the boys in the mud with their shovels, the young cashier stared at the price list. After a long pause, one of her teachers—perhaps sensing a good opportunity to step in—helped her calculate the difference between the price of my order and the 10€. Once I received my change (a few plastic coins), the girls giggled as I pretended to lick my ice cream.
Throughout the morning I noticed that the kindergartners played in two different ways: One was spontaneous and free form (like the boys building dams), while the other was more guided and pedagogical (like the girls selling ice cream).

In fact, Finland requires its kindergarten teachers to offer playful learning opportunities—including both kinds of play—to every kindergartner on a regular basis, according to Arja-Sisko Holappa, a counselor for the Finnish National Board of Education. What’s more, Holappa, who also leads the development of the country’s pre-primary core curriculum, said that play is being emphasized more than ever in latest version of that curriculum, which goes into effect in kindergartens next fall.

“Play is a very efficient way of learning for children,” she told me. “And we can use it in a way that children will learn with joy.”

“Those things you learn without joy you will forget easily.”
The word “joy” caught me off guard—I’m certainly not used to hearing the word in conversations about education in America, where I received my training and taught for several years. But Holappa, detecting my surprise, reiterated that the country’s early-childhood education program indeed places a heavy emphasis on “joy,” which along with play is explicitly written into the curriculum as a learning concept. “There’s an old Finnish saying,” Holappa said. “Those things you learn without joy you will forget easily.”

* * *
After two hours of visiting a Finnish kindergarten, I still hadn’t seen children reading. I was, however, hearing a lot of pre-literacy instruction sprinkled throughout the morning—clapping out syllables and rhyming in Morning Circle, for example. I recalled learning in my master’s degree courses in education that building phonemic awareness—an ability to recognize sounds without involving written language—was viewed as the groundwork of literacy development.

Just before lunch, a kindergarten teacher took out a basket brimming with children’s books. But for these 5- and 6-year-olds, “reading” looked just like how my two toddlers approach their books: The kindergartners, sitting in different corners of the room, flipped through pages, savoring the pictures but, for the most part, not actually deciphering the words. Osei Ntiamoah told me that just one of the 15 students in her class can currently read syllable by syllable. Many of them, she added, will read by the end of the year. “We don’t push them but they learn just because they are ready for it. If the child is willing and interested, we will help the child.”

Nowadays, Finnish teachers are free to teach reading if they determine a child is “willing and interested” to learn.
There was a time in Finland—in the not so distant past—when kindergarten teachers weren’t even allowed to teach reading. This was viewed as the job of the first-grade teacher. But, as with America, things have changed: Nowadays, Finnish teachers are free to teach reading if they determine a child is—just as Osei Ntiamoah put it—“willing and interested” to learn.
Throughout Finland, kindergarten teachers and parents meet during the fall to make an individualized learning plan, shaped by each child’s interests and levels of readiness, which could include the goal of learning how to read. For Finnish kindergartners who seem primed for reading instruction, Holappa told me it’s still possible to teach them in a playful manner. She recommended the work of the Norwegian researcher Arne Trageton—a pioneer in the area of play-based literacy instruction.

Meanwhile across the Atlantic, kindergarten students like that of the Arkansas teacher are generally expected—by the end of the year—to master literacy skills that are far more complex, like reading books with two to three sentences of unpredictable text per page. “These are 5- to 6-year-olds!” the Arkansas teacher wrote in disbelief.

More than 40 states—including Arkansas—have adopted the Common Core State Standards, which contain dozens of reading expectations for kindergartners. In the United States—where 22 percent of the nation’s children live in poverty (more than 16 million in total)—the Common Core’s emphasis on rigorous language-learning in kindergarten could be viewed as a strategy for closing the alarming “Thirty Million Word Gap” between America’s rich and poor—holding schools accountable for having high expectations for their youngest students.

Furthermore, unlike the reality of teaching kindergarten in Finland where the poverty rate is 10 percent and the student-teacher ratio is typically 14:1 (based on national guidelines), most American kindergarten teachers don’t have a choice whether or not they teach reading. Under the Common Core, children should be able to “read emergent-texts with purpose and understanding” by the end of kindergarten. Ultimately, they’re expected to, at the very least, be able to decode basic texts without the support of a teacher.
“But there isn’t any solid evidence that shows that children who are taught to read in kindergarten have any long-term benefit from it,” Nancy Carlsson-Paige, a professor emeritus of early childhood education at Lesley University, explained in a video published by the advocacy group Defending the Early Years.

“But there isn’t any solid evidence that shows that children who are taught to read in kindergarten have any long-term benefit from it.”
Research by Sebastian Suggate, a former Ph.D. candidate at New Zealand’s University of Otago studying educational psychology, confirms Carlsson-Paige’s findings. One of Suggate’s studies compared children from Rudolf Steiner schools—who typically begin to read at the age of seven—with children at state-run schools in New Zealand, who start reading at the age of five. By age 11, students from the former group caught up with their peers in the latter, demonstrating equivalent reading skills.

“This research then raises the question,” he said in an interview published by the University of Otago. “If there aren’t advantages to learning to read from the age of five, could there be disadvantages to starting teaching children to read earlier?”

* * *

At the end of my visit to the Finnish kindergarten, I joined the 22 children and their two teachers for a Friday event that only happens on weeks when children are celebrating their birthdays. The birthday child that week sat at the front of the classroom in a chair facing his peers and teachers, all of whom sat in a semicircle, and a table with a candleholder to his left.

I expected the celebration to end after the lighting of candles and “Happy Birthday” song, but it didn’t. One of the boy’s classmates, donning a hat that looked like a beret and wearing a mail carrier’s sling over his shoulder, took him by the hand, and the two proceeded to dance as we sang the Finnish children’s song, “Little Boy Postman.”

Once the song was complete, the little postman took out a card and handed it to his classmate. “Would you like me to help you read this?” one of the birthday boy’s teachers asked. “You help,” he responded, a hint that hadn’t quite mastered the skill yet. I watched his face carefully, searching for any hint of shame. I found none—but then again, why should he have felt embarrassed?

The flickering six candles reminded me he’s only a little kid.