Through embedded assessments, educators can see evidence of students’ thinking during the learning process and provide near real-time feedback through learning dashboards so they can take action in the moment.
2016 National Education Technology Plan
Students find tests stressful for good reason. Results not only evaluate what they have learned, but can be used to determine whether they graduate or get into college. Such assessments are “summative” in that they aim to evaluate what a student has learned at the conclusion of a class. In 2002 when the U.S. government tied school funding to student outcomes through the No Child Left Behind law, tests became stressful for educators as well.
With so much at stake, testing became a top priority in many classrooms. A 2015 survey of 66 districts by the Council of Great City Schools found that U.S. students on average took eight standardized tests every year—which means by the time they graduated high school, they would have taken roughly 112 such tests. Testing fever was followed by fatigue; nearly two-thirds of parents in a Gallup poll released that year said there was too much emphasis on testing.
But tests need not be so punitive. For decades, education researchers have argued that tests can be used during—not after—the learning process. In 1968, educational psychologist Benjamin Bloom argued that “formative” assessments could diagnose what a student knew, enabling teachers to adjust their instruction or provide remediation. Students could also use these results to better understand and reflect on what they know.
There’s no emotional stress associated with formative assessments. They help teachers engage with students during the learning process.
—Cory Reid, chief executive officer of MasteryConnect
To check for understanding, teachers can use formative assessments in the form of short quizzes delivered at the beginning or end of class, journal writing and group presentations. (Here are 56 examples.)
“There’s no emotional stress associated with formative assessments,” said Cory Reid, chief executive officer ofMasteryConnect. “They help teachers engage with students during the learning process.”
“In moderation, smart strategic tests can help us measure our kids’ progress in schools [and] can help them learn,” President Obama said in a video address.
“Tests should enhance teaching and learning,” Obama continued. In December 2015, he signed the Every Student Succeeds Act, allowing states more flexibility in determining how and what they could use to assess students. By doing so, the government opened the door to let states decide what works best for their schools.
Summative tests still remain, but the industry has shifted its focus to embedding tests to make them an integral part of the teaching and learning process. In addition academic achievement is no longer the primary focus; technologists are attempting to quantify non-cognitive factors, including student behavior and school culture, all of which impacts how students learn.
Credit: Vixit/Shutterstock
In the 1970s, Scantron Corporation offered one of the most popular and commercially successful technologies for doing formative and summative tests: bubble sheets that students would fill out with #2 pencils that could be automatically graded. A couple decades later, “clickers”—devices with buttons that transmit responses to a computer—offered an even quicker way for teachers and students to get feedback on multiple-choice questions.
Today, web-based and mobile apps can deliver formative assessments and results cheaper and more efficiently. Smartphones and web browsers have become the new clicker to deliver instantaneous feedback. In classrooms where not every student has a computer or a phone, some teachers use apps to snap photos of a printed answer sheet and immediately record grades. And as teachers use more online materials, there are also tools that allow them to overlay questions on text, audio or video resources available on the internet.
Student responses from formative assessment tools can be tied to a teacher’s lesson plans or a school’s academic standards. This information can help teachers pinpoint specific areas where students are struggling and provide targeted support.
Faster feedback also means that assessments can be given even as lessons are going on. “If you know what a student knows when they know it, that informs your instruction as a teacher,” says Reid. That data can “enrich your teaching and help change a student’s path or trajectory.”
Beyond Multiple Choice
The Common Core tests, which many students take on computers, introduced “technology-enhanced items” (TEIs). These allow students to drag-and-drop content, reorder their answers and highlight or select a hotspot to answer questions. Such interactive questions, according to the U.S. Department of Education’s 2016 National Education Technology Plan, “allow students to demonstrate more complex thinking and share their understanding of material in a way that was previously difficult to assess using traditional means,” namely through multiple choice exams.
Source: U.S. Department of Education, Office of Educational Technology, Future Ready Learning: Reimagining the Role of Technology in Education, Washington, D.C., 2016.
A well-designed TEI should let educators “get as much information from how students answer the question in order to learn whether they have grasped the concept or have certain misconceptions,” according to Madhu Narasa, CEO of Edulastic. His company offers a platform that allows educators to create TEIs for formative assessments and helps students prepare for Common Core testing. Another startup, Learnosity, licenses authoring tools to publishers and testing organizations to create question items. (Here are more than 60 different types of TEIs.)
Yet teachers and students need training to use TEIs. And the latest TEIs may not always work on older web browsers and devices. One early version of the Common Core math test developed by Smarter Balanced Assessment Consortium featured TEIs that even adults found difficult to use. And, while TEIs offer more interactivity, their effectiveness in measuring student learning remains unproven. A 2015 report from Measured Progress, another developer of Common Core tests, suggested “there is not broad evidence of the validity of inference made by TEIs and the ability of TEIs to provide improved measurement. Without such research, there is no way to ensure that TEIs can effectively inform, guide, and improve the educational process.”
Show Me Your Work
Tests are not the only way for students to demonstrate understanding. Through hands-on projects, students can demonstrate both cognitive and noncognitive skills along with interdisciplinary knowledge. A science fair project, for example, can offer insights into students’ command of science and writing, along with their communication, creativity and collaboration skills.
The internet brought powerful media creation tools—along with cloud-based storage—into classrooms, allowing students to create online. Companies such as FreshGrade offer digital portfolio tools that aim to help students document and showcase their skills and knowledge through projects and multimedia creations in addition to homework and quizzes. Through digital collections of essays, photos, audio clips and videos, students can demonstrate their learning through different mediums.
Games as Test
Credit: SimCity
What can games like SimCity, Plants vs. Zombies and World of Warcraft tell us about problem-solving skills? A growing community of researchers, including Arizona State University professor James Paul Gee, argue that well-designed games can integrate assessment, learning and feedback in a way that engages learners to complete challenges. “Finishing a well-designed and challenging game is the test itself,” he wrote in 2013.
GlassLab, a nonprofit that studies and designs educational games, has developed tools to infer mastery of learning objectives from gameplay data. These tests are sometimes called “stealth assessments,” as the questions are directly embedded into the game. The group has described at length how psychometrics, the science of measuring mental processes, can help game designers “create probability models that connect students’ performance in particular game situations to their skills, knowledge, identities, and values, both at a moment in time and as they change over time.”
A 2014 review of 69 research studies on the effectiveness of games by research group, SRI International, offers supporting evidence that digital game interventions are more effective than non-game interventions in improving student performance. But other studies offer a mixed picture. A study led by Carnegie Mellon University researchers on a popular algebra game, Dragonbox, found that “the learning that happens in the game does not transfer out of the game, at least not to the standard equation solving format.” Similar to the Brazilian “street math” kids (see math profile), these students are capable of solving math problems—just not on a traditional paper exam.
Noncognitive Skills
Educators and researchers also believe that non-cognitive skills—including self-control, perseverance and growth mindset—can deeply influence students’ academic outcomes. In 2016, eight states announced plans to work with the nonprofit CASEL(Collaborative for Academic, Social, and Emotional Learning) to create and implement standards around how social and emotional skills can be introduced into classroom instruction.
Today, developers are seeking ways to quantify factors such as student behavior and school climate. Tools such as Kickboard andLiveSchool record, track and measure student behavior. Panorama Education lets educators run surveys to learn how students, families and staff feel about topics such as school safety, family engagement and staff leadership. Tools like these expand the use of assessments beyond simply measuring student performance on specific subjects and cognitive tasks.